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In this paper we present a concise survey of the research in Computational
Number Theory� carried out at CWI in the period ����  ����� with up�
dates to the present state�of�the�art of the various subjects� if necessary	
This research was stimulated greatly by the continuous availability to CWI�
researchers of excellent contemporary computing facilities	 It enabled the
researchers to considerably �move the boundaries� of our knowledge of var�
ious classical number�theoretic problems� like the Riemann hypothesis� the
Mertens conjecture� and the Goldbach conjecture	 In addition� the compu�
tational results often gave rise to new insights and the development of new
theory and algorithms	 The main topics covered here are�

� the Riemann zeta function� its complex zeros and the Riemann hypoth�
esis� the Mertens conjecture� the sign of the di�erence ��x��li�x�� and
the zeros of the error term in an asymptotic formula for the mean square
of j�� �

�
� it�j�

� special zeros of partial sums of the Riemann zeta function�

� decomposition of large integers into prime factors�

� aliquot sequences and aliquot cycles like amicable numbers�

� four smaller projects� the Goldbach conjecture� the constant of De
Bruijn�Newman� the Diophantine equations �k��k�� � ���x���k � xk

and x� � y� � z� � k	

���



�� Introduction�

In this paper we present a concise survey of the research in Computational
Number Theory which was carried out at CWI in the past �� years� The
excellent computing facilities and the �availability� of much idle CPU�time have
been� and still are� a continuous stimulus� Where appropriate� we will update
the present state�of�the�art of the subjects treated� The computational number
theory group at CWI is part of CWI	s Department of Numerical Mathematics�
and this partly explains the choice of some number�theoretical problems with
numerical aspects� like the separation of the zeros of the Riemann zeta function�
The Riemann hypothesis� which is one of the most famous and notorious

unresolved conjectures in mathematics� and related subjects like the Mertens
conjecture� are treated in Section �� The location of certain zeros of partial
sums of the Riemann zeta function is discussed in Section 
� The problem of
the decomposition of large integers into prime factors is dealt with in Section ��
This classical problem has attracted renewed attention after the discovery by
Rivest� Shamir and Adleman� in ���� of an important application in public�key
cryptography ������ Number�theoretic sequences in which each term is com�
puted from the previous term by the application of a given number�theoretic
function� are the subject of Section �� In particular� if this function is chosen to
be the sum of certain divisors� we obtain �generalized� aliquot sequences� Sec�
tion �� �nally� discusses four smaller subjects� in order to illustrate the broad
range of number�theoretical topics� which have been studied at CWI in the
past �� years�
Traditionally� computers have played an important helping role in number

theory� Early computations were with integers and rationals� but the discov�
ery by Riemann of the connection between the distribution of primes and the
complex zeros of the Riemann zeta function �see Section ���� has stimulated
computations on analytic functions� A survey of analytic computations in
number theory will appear soon ����
In the early seventies our research was carried out with the help of the Elec�

trologica EL X� computer� Jobs were submitted on punch cards or paper
tape� Development and debugging of programs� especially the paper tape ones�
was a time�consuming activity� In the early eighties� a Control Data Cyber
��� computer at SARA �Academic Computer Center Amsterdam� became our
favourite number cruncher� The advent� in ���� of the CDC Cyber ��� vector
computer at SARA marked the beginning of the vector and parallel comput�
ing era at CWI� at least for the computational number theory group� This
machine was replaced� early ��� by a Cray Y�MP vector computer with four
CPUs� early �� this one was succeeded by a Cray C�� also with four CPUs�
Meanwhile� powerful workstations have become a common researcher	s tool�
We now have access to �� SGI workstations which can be used at night and in
the weekends as a big parallel distributed memory computer� At present� this
cluster of workstations is used mainly for the factorization of large numbers�
the algorithms are extremely well parallelizable and require a minimal amount
of communication �see Section ���
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Many number�theoretic computations deal with large integers which do not
�t in one computer word� Therefore� one often has to resort to multiple�
precision packages� Some of our factorization software �see Section �� is built
on a multiple�precision package of Dik Winter for basic integer arithmetic� A
very reliable higher�level package which we have often used� e�g�� in ��� and
������ is Brent	s MP�package ���� A more recent package� which runs e�ciently
on vector computers� and which employs advanced algorithms like FFT for op�
erations on extremely large numbers� is Bailey	s MPFUN�package ���� The
packages of Brent and Bailey work with a �oating point representation of the
large numbers involved� but by a small extension of the precision the packages
can be used conveniently for exact computations with large integers� A very
fast symbolic package which has been especially tailored to number�theoretic
computations is PARI ���� it provides tools which are rarely found in other
symbolic packages� such as direct handling of mathematical objects� for exam�
ple p�adic numbers� algebraic numbers and �nite �elds� etc� More general� but
less e�cient for large�scale computations� are computer algebra packages like
MAPLE and MATHEMATICA� Varga ��
�� has recently discussed a set of
mathematical problems and conjectures which require the help of software for
multiple�precision arithmetic� This illustrates the power of such software as a
modern tool for attacking mathematical problems and conjectures�

�� The Riemann hypothesis� separation and location of the com�

plex zeros of ��s�
The Riemann hypothesis is one of the most famous conjectures in pure mathe�
matics� The standard textbook on this subject is ��
��� For an excellent treat�
ment of the history and the computational aspects of the Riemann hypothesis�
we refer to ��
��
Consider the function ��s� �

P�
n�� n

�s� where s � � � it is a complex vari�
able� If � � �� then the series converges� so that ��s� is properly de�ned there�
Riemann� who was the �rst to study this function for complex s� showed by
using analytic continuation that there exists a unique function which coincides
with ��s� for � � �� and which is analytic in the whole complex plane� except
at the point s � � �where the function has a pole of order ��� This function
is known as the Riemann zeta function and it plays a prominent role in prime
number theory� If we de�ne

��s� �
�

�
s�s� ����s�����s����s�� ���

where � is Euler	s gamma�function� i�e�� a generalization of the factorial func�
tion n� ���n � �� � n� for positive integers n�� then ��s� is an entire function
satisfying the functional equation

��s� � ���� s�	 ���

Using well�known properties of the gamma�function� it follows that ��s� � �
for s � ��n� n � �� �� 
� 	 	 	� These zeros are the so�called trivial zeros of ��s��
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This terminology suggests that ��s� has more zeros� These do exist indeed
and are located in the so�called critical strip � � � � �� It can be proved
that the function �� �� � is� is an even entire function of order �� According to
Hadamard	s general theory of entire functions� such functions have an in�nite
number of zeros� By means of the so�called Euler product formula

�X
n��

n�s �
Y

p prime

��� p�s��� �� � ���

and by using ���� it is not di�cult to show that ��s� has no zeros outside the
critical strip� The precise location of these zeros has been the subject of much
research� Since

��� ���s���s� � �� �

�s
�

�


s
� 	 	 	 � � �� 
 s 
 ���

and ���� � � �
� � ��s� has no zeros on the real axis between � and �� Moreover�

we have ��s� � ��s�� so that the complex zeros lie symmetrically with respect
to the real axis� In combination with the functional equation this implies that
these zeros either lie on the line � � �

� � or lie in pairs symmetrically with
respect to this line� In a famous paper published in ��� ������ Riemann wrote
that it is very likely that all these zeros lie on the line � � �

� � So far� nobody
has been able to �dis�prove this assertion� which is known now as the Riemann
hypothesis�
What is the relation between the Riemann hypothesis and prime number

theory� Consider the function ��x� which denotes the number of primes � x�
As early as in ��� or ��
� Gauss conjectured that the density of the prime
numbers close to x is approximately equal to �� logx� and that the so�called
logarithmic integral

li�x� �

Z x

�

dt

log t
�
�

is a good approximation of the function ��x�� Extensive numerical computa�
tions ���
� pp� 
���
�
� suggest that the error in this approximation is propor�
tional to

p
x� for x � ����� ����� ����� ����� ���� we have ���x�� li�x���

p
x �

��	�
�� ��	�
�� ��	�
�� ��	���� and ��	���� respectively� The following is
known� if� for some ��

��x� � li�x� �O�x�� as x���

then ��s� has no zeros in the half plane � � �� Conversely� if ��s� �� � for
� � �� then

��x� � li�x� �O�x� logx� as x��	

We can safely choose � � � but not � 
 � �see below�� although the experiments
suggest that � � ��� is still possible�
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What is known about the location of the complex zeros of ��s�� Extensive
numerical computations have proved that the �rst �	� � ��	 complex zeros of
��s� are all simple and lie on the line � � �

� ����� and the same holds for long
sequences of consecutive zeros in the neighborhood of zeros of rank ����� ���	�
and ���� ���� The famous Prime Number Theorem says that ��x� � x� logx
as x��� One can show that this is equivalent to the statement that ��s� has
no zeros on the line � � �� So far� this result has not been improved essentially�
i�e�� with our present knowledge we cannot exclude the possibility that there
are complex zeros of ��s� arbitrarily close to the line � � �� What we do know
is that most complex zeros lie close to the critical line �� � �

� � in the sense
that for each � � � all complex zeros have a distance to the critical line which
is 
 �� with the possible exception of a subset of asymptotic density � within
the set of all non�trivial zeros� For the total number of complex zeros  � i�
with � 
 � � T � denoted by N�T �� we have

N�T � � T

��
log

T

��
� T

��
�O�logT � as T ��	 ���

With respect to the zeros on the critical line� it is known that at least two��fths
of all complex zeros of ��s� lie on that line �

�� For more references and details�
see ���� �����
At CWI a considerable amount of numerical work has been carried out in

relation to the complex zeros of ��s� ���� ��� ��� ��� ��
� �
�� ���� ���� �� ����
����
In Section ��� we describe computations carried out to verify the Riemann

hypothesis for the �rst �	����	 complex zeros of ��s�� As a result� the Riemann
hypothesis is true for � 
 �s 
 ���� �
� ��
�
In Section ��� we describe joint work of A�M� Odlyzko and the �rst author

resulting in a disproof of the conjecture of Mertens� For this purpose the
�rst ���� complex zeros of ��s� were computed with an accuracy of about ���
decimal digits� The truth of the Mertens conjecture would have implied the
truth of the Riemann hypothesis�
The di erence ��x� � li�x� is known to have in�nitely many sign changes�

Nevertheless� for all values of x for which this di erence has been computed
explicitly� it is found to be negative� In Section ��
 we describe how from the
knowledge of the truth of the Riemann hypothesis in the critical strip with
� 
 �s 
 ���� ���� and from the knowledge of the �rst ������ complex zeros
to about �� digits� and the next 
����� to about �� digits� it was proved that
��x�� li�x� changes sign for some x 
 �	����
��� The method used is similar
to the one used by Sherman Lehman ���� who proved that a sign change
occurs for some x 
 �	��� �������
The mean square I�t� of the Riemann zeta function on the critical line�

I�t� �

Z t

�

�����
�
�

�
� iu

�����
�

du

��



is known to have the �asymptotic expansion�

I�t� � t log
t

��
� ��� � ��t� o�t� as t��

�where � is Euler	s constant�� The o�t��term plays a central role in the theory
of the Riemann zeta function� In Section ��� computations are described of the
zeros below t � ���� ��� of the function

I�t�� t

�
log

t

��
� �� � �

�
� �

�which has mean value ��� For these computations we used the Euler�Maclaurin
and Riemann�Siegel formulas for computing �� �� � it�� described in Section ����

���� Numerical veri�cation of the Riemann hypothesis
������ Mathematical background
With the help of the well�known Newton process it is possible to �nd an ap�
proximation of a complex zero of ��s�� but this process can not be used to prove
rigorously that such a zero has real part exactly equal to �

� � Fortunately� the
problem can be formulated in a di erent way such that it is really possible to
give a mathematical proof of the truth of the Riemann hypothesis in a �nite
part of the critical strip� namely as follows�
In the previous section we have seen that the non�trivial zeros of ��s� are

precisely the zeros of ��s�� From ��� and ��s� � ��s� it follows that

�

�
�

�
� it

�
� �

�
�

�
� it

�
� �

�
�

�
� it

�
�

so that� for real t� �� ���it� must be real�valued� This means that complex zeros
of ��s� which lie on the line � � �

� can be determined by �nding sign changes
of the continuous function �� �� � it�� Furthermore� it is appropriate to divide
this function by the real quantity

�

�
��t� � �

�
�

�������� �
it

�
���

�

�
� it

�

���� 	
The function obtained in this way is denoted by Z�t�� and we have� using ����

Z�t� �
����� � it�

�
� ��t� � �

� �j�� �� � it
� ��

� �

�
� it

� j �
�� �� �

it
� �

j�� �� � it
� �j

��
�

�
� it

�

j�� �

�
� it

� j��
�

�
� it� �

� exp

�
i� log ���

�
�
it

�
�

�
��it����

�

�
� it��

so that jZ�t�j � j�� �� � it�j� Like �� �� � it�� Z�t� is real�valued for real t and
its �real� zeros � correspond precisely to the zeros �

� � i� of ��s� on the critical
line� Furthermore� Z�t� is continuous� so that� if we can prove that Z�t� changes

��



sign between t� and t�� then we have shown the existence of a zero s� �of odd
multiplicity� of ��s� on the line � � �

� with t� 
 �s� 
 t��
We write

Z�t� � ei��t��
�

�
� it�

where

��t� � � log ���
�
�
it

�
�� t

�
log�

with ��t� continuous and ���� � �� In the next section we will describe two
methods to compute Z�t�� By means of Stirling	s formula for log ��s� it is
possible to derive the following asymptotic expansion for ��t��

��t� �
t

�
log

t

��
� t

�
� �

�
�

nX
k��

jB�kj��� ����k�

�k��k � ��
t���k � rn�t�� ���

where B� � ���� B� � ���
�� B� � ����� B� � ���
�� 	 	 	 are the Bernoulli�
numbers� and

jrn�t�j 
 ��n��

�����n��t�n��
� exp���t�

for all t � � and n 	 �� The function ��t� has a minimum value of about �
	�

in the neighborhood of t � ��� and is monotonically increasing for t 	 �� For
integral m 	 �� we de�ne the m�th Gram point gm as the unique solution
x 
 ����� of the equation

��x� � m�	

After Riemann� Gram ���� was the �rst to work on the numerical veri�cation
of the Riemann hypothesis� He computed �� zeros of ��s� on the line � � �

� � He
also succeeded in proving that his list contained all �ten� zeros in the interval
� � t � ��� so that the Riemann hypothesis holds true for this interval� An
important observation which Gram made was that Z�t� changes sign between
two consecutive Gram points� to be more precise�

signZ�gn� � ����n	 ���

A Gram point for which ��� holds� is called �good�� otherwise it is called
�bad�� �Gram	s Law� is known as the assertion that all Gram points are
good� although nowadays we know that this �Law� fails in�nitely often� What
is correct is that on average there is exactly one zero of Z�t� between two
consecutive Gram points� If one wants to prove the Riemann hypothesis in a
given �nite part of the critical strip� this is an extremely handy �rule�of�thumb�
for e�ciently �nding sign changes of Z�t�� It can be formulated more precisely
as follows� let

S�t� � N�t�� �� ��t�

�
���

��



where N�t� is the function de�ned above formula ���� Then Gram	s law holds
whenever jS�t�j 
 �� Numerical experiments have shown that this is indeed
the case in more than ��! of the range where the �rst ������������� complex
zeros of ��s� are located� In the rest of this range� jS�t�j 
 � holds almost
everywhere and jS�t�j � 
 has not been observed so far� although it is known
that S�t� is unbounded�
We have seen how in a �nite part of the critical strip zeros of ��s� can be

found which lie on the critical line� If we can prove now that these are all the
zeros in that part of the critical strip� then here the Riemann hypothesis is
true� The following theorem of Littlewood and Turing is very helpful�

If Z�t� has at least n � � zeros between t � � and a good Gram
point t � gn� and if for every next good Gram point t � gn�j �
j � �� 	 	 	 � k� with k � d�	�����log gn�� � �	�� log gne� Z�t� has at
least n � j � � sign changes in the interval ��� gn�j �� then ��s� has
at most n� � zeros with imaginary part in the interval ��� gn��

In the case that not all k Gram points gn�j � j � �� 	 	 	 � k� are good� a more
general version of this theorem can be invoked ���� Theorem 
����
To summarize� we can verify the Riemann hypothesis up to a good Gram

point gn by �nding n � � sign changes of Z�t� in the interval ��� gn� and by
�nding su�ciently many sign changes between t � gn and a few subsequent
good Gram points�

������ The formulas of Euler�Maclaurin and Riemann�Siegel
So far we have seen that zeros of ��s� on the critical line can be found by means
of sign changes of the real�valued function

Z�t� � ei��t��
�

�
� it�	 ���

So� it is necessary that we are able to determine the sign of Z�t� with mathe�
matical certainty� This means that� if we wish to compute Z�t�� together with
its sign� on a computer� we have to make an analysis of all possible errors which
might occur� Therefore� together with the expansion given below in ����� we
shall give an upper bound for the error which we commit by truncating this
expansion after a �nite number of terms� Rounding errors can be analyzed by
means of Wilkinson	s backward error analysis ��
��� The latter are generally
much smaller than the former� therefore we shall not pay attention to them
here �although� of course� they may not be neglected�� Here� we describe the
so�called Euler�Maclaurin and the Riemann�Siegel formulas for computing ��s��
and Z�t�� respectively� The latter method is more e�cient than the former to
compute ����� � it� for moderately large values of t �t � ���� say�� Odlyzko
and Sch�onhage ��� have given algorithms which are more e�cient than the
Riemann�Siegel formula� when many values at closely spaced points are needed
�like in the numerical veri�cation of the Riemann hypothesis��
The Euler�Maclaurin formula enables us to compute ��s� to any prescribed

accuracy� provided m and n are chosen properly�

��



��s� �

n��X
j��

j�s �
�

�
n�s �

n��s

s� �
�

mX
k��

Tk�n�s� �Em�n�s�� ��

where

Tk�n�s� �
B�k

��k��
n��s��k

�k��Y
j��

�s� j� ����

and

jEm�n�s�j 

����Tm���n�s�

s� �m� �

� � �m� �

���� ����

for all m 	 �� n 	 �� and � � �s � ���m � ��� If we use this formula for
s � �

� � it� we may choose n � t���� It is also su�cient to choose n � O�t�
and m � O�t�� Therefore� the amount of work is roughly proportional to t�
The Riemann�Siegel formula is �sort of� an asymptotic expansion of Z�t�� For

large values of t this formula is much more e�cient than the Euler�Maclaurin
formula� since the required amount of work is O�t���� instead of O�t��
Let � �� t������ m �� b����c� and z �� �������m�� �� The Riemann�Siegel

formula with n� � error terms is given by

Z�t� � �

mX
k��

k���� cos�t log k � ��t�� � ����

�����m�������
nX
i��

"i�z�����i��i�� �Rn����

where
Rn��� � O�����n�
���

for n 	 �� and � � � �for ��t�� see ����� Here� the "i�z� are certain entire
functions which can be expressed in terms of the derivatives of

"��z� �� "�z� ��
cos����z� � 
����

cos��z�
	

We have� for example�

"��z� �
"�
�z�

���


and

"��z� �
"���z�

����
�
"���z�

�����
	

For Rn���� n � �� �� �� 
� and � � 
� �t � ���� the following upper bounds hold
�����

jRn���j 
 dn�
���n�
��

with d� � �	�
�� d� � �	����� d� � �	����� and d
 � �	�����

�




If we write "i�z� as a power series in z�

"i�z� ��

�X
j��

cijz
j �

then it turns out that "i has an even power series for even i� and an odd power
series for odd i� For i � �� �� � and 
� the �rst �� non�zero coe�cients cij of
"i�z� are given in Table ��

j c��j c��j�� c��j c
�j��
� ��
����
�
�
� ������������
 ������������
 �����

����
� ���
��������� �����
�����
�
 �����
������ �����
��������
� ���
�
������� ����
�������� ������

����� �����

�
���
� �����
�������� �����������
� ������

����� �������������
� �����
������� ����

������ ��������
��� �������������

�� ��������
���
� ������������� �����
�
��� �����������
��
�� ���������
�� �������
���� ������������� �������������
�� ��������

�� ������������ �����������
 �����������


�� ������������� ������������� �����������
 �������������
�� ����������
��
 �����������
 ������������ ��������


���

�� �����������
�� ����������

� �������������� ������������
�� �����������
� �������������� �������������� ������������
�� ������������ �������������� ������������� ������������
�� �������������
 �������������� ������������ �������������
�� �������������� ������������� ������������� �������������

Table �� Coe�cients cij of "i�z�

������ Large�scale computations verifying the Riemann hypothesis for the �rst
�	�� ��	 complex zeros of ��s�
In a series of four papers ����� ����� ����� ����� the results were presented of large�
scale computations concerning the veri�cation of the Riemann hypothesis for
the �rst ������������� complex zeros� Brent checked the zeros with rank up to
����������� and Van de Lune� Te Riele� and Winter �LRW� checked the others
with rank up to �������������� by using the Riemann�Siegel formula ����� with
n � � �Brent� and n � � �LRW�� respectively�
The problem is to separate the zeros of Z�t� by evaluating Z in consecutive

Gram points and checking the signs� On average there is exactly one zero in
a Gram interval �i�e�� between two consecutive Gram points�� A sign change
in two consecutive Gram points means that there are �� or 
� ��� zeros� and no
sign change means �� or �� ��� zeros� It turned out that among the �rst �	����	
Gram intervals� ����! have � zero� �
��! have no zeros� �
��! have � zeros�

��



����! have 
 zeros� and that there are only 

 Gram intervals with � zeros�
LRW developed a strategy to trace the correct number of zeros by a close�to�
minimal number of Z�evaluations� by carefully looking at the behaviour of Z
in Gram intervals violating Gram	s law� They reduced the average number
of Z�evaluations needed to separate one zero to ��� �against ��� in Brent	s
program��
Sign changes were determined rigorously with the help of a complete error

analysis of all errors made in the computation of Z�t�� A fast single precision
��� bits	 accuracy� and a slow double precision �
 bits	 accuracy� subroutine
for computing Z�t� were developed� The slow� but more accurate version was
invoked when the fast� less accurate version produced such a small jZj�value
that the sign of Z could not be determined rigorously� given the upper bound
of the error determined by the error analysis� With the slow� accurate version
not a single value of Z was encountered for which the corresponding sign could
not be determined without doubt�
The major part of the computations were done on a CYBER ��� vector com�

puter� where the most time�consuming part of the method� the computation of
the �rst sum in ����� was vectorized� The time required for one Z�t��evaluation
for t at the end of the interval under investigation �where t � �	��� ��� and
m � 
��� was about � msec ��
��� Many statistics were collected concerning
places where Z has � or at least � zeros between two consecutive Gram points�
Also intervals where consecutive Z�zeros are extremely close to each other
and intervals where they are extremely far apart� were recorded� The statis�
tics collected show that with the LRW strategy at least ���
� Z�evaluations
were needed to separate the �rst �	�� ��	 zeros of ��s�� so that the overhead
amounted to �����	� � �	�
����	�
� � �	�!� On a CYBER ��� about ����
CPU�hours were spent on this project� and on a CYBER ���#��� about ��
CPU�hours� The program on the CYBER ��� ran about �� times faster than
that on the CYBER ���#����

���� Disproof of the Mertens conjecture
The M$obius function ��n� is de�ned as follows�

��n� ��

��
�

�� n � ��
�� if n is divisible by the square of a prime number�

����k� if n is the product of k distinct primes�

Taking the sum of the values of ��n� for all n � x� we obtain the function

M�x� �
X

��n�x

��n��

which is the di erence between the number of squarefree positive integers n � x
with an even number of prime factors and those with an odd number of prime
factors�
In ����� Stieltjes claimed in a letter to Hermite to have a proof that the

function M�x��
p
x oscillates between two �xed bounds� no matter how large x

��



may be� In passing� Stieltjes added that one could probably take �� and ��
for these bounds� It is possible that this assertion was based on some tables of
M�x� which were found in Stieltjes	 inheritance� The motivation for Stieltjes	
work on M�x� was that the size of M�x� is closely related to the location of
the complex zeros of the Riemann zeta function� In fact� the boundedness of
M�x��

p
x would imply the Riemann hypothesis as follows� For � � �s � ��

we have �by using partial summation�

����s� �
�X
n��

��n�

ns
�

�X
n��

M�n��M�n� ��

ns
�

�

�X
n��

M�n�

�
�

ns
� �

�n� ��s

	
�

�X
n��

M�n�

Z n��

n

sdx

xs��
�

� s
�X
n��

Z n��

n

M�x�dx

xs��
� s

Z �

�

M�x�dx

xs��
�

sinceM�x� is constant on each interval �n� n���� The boundedness ofM�x��
p
x

would imply that the last integral in the above formula de�nes a function
analytic in the half plane � � �

� � and this would give an analytic continuation
of ����s� from � � � to � � �

� � In particular� this would imply that ��s� has
no zeros in the half plane � � �

� � which is� by the functional equation for ��s��
equivalent to the Riemann hypothesis� In addition� it is not di�cult to deduce
from the above formula that all complex zeros of ��z� would be simple �see�
e�g�� ��� p�������
After Stieltjes� many other researchers have computed tables of M�x�� in

order to collect more numerical data about the behaviour of M�x��
p
x� The

�rst one after Stieltjes was Mertens who� in ���� published a paper with a
���page table of ��n� and M�n� for n � �� �� 	 	 	 � ������ Based on this table�
Mertens concluded that the inequality

jM�x�j 
 p
x� x � ��

is �very probable�� This is now known as the Mertens conjecture�
In ���� Ingham ��� published a paper which raised the �rst serious doubts

about the validity of the Mertens conjecture� Ingham	s paper showed that it
is possible to prove the existence of certain large values of jM�x�j�px without
explicitly computingM�x�� This stimulated a series of subsequent papers until�
in ���� Odlyzko and Te Riele ��� �nally disproved the Mertens conjecture�
Some historical notes are given in ����� ����
Here� we shall give a sketch of the indirect disproof of the Mertens conjecture�

which does not give any single value of x for which jM�x�j�px � �� Write
x � ey� �� 
 y 
�� and de�ne

m�y� ��M�x�x���� �M�ey�e�y��

��



and
m �� lim inf

y��
m�y�� m �� lim sup

y��
m�y�	

Then we have the following ����� ����� ����

Theorem �� Suppose that K�y� 
 C�������� K�y� 	 �� K��y� � K�y��
K�y� � O��� � y����� as y ��� and that the function k�t� de�ned by

k�t� �

Z �

��

K�y�e�itydy

satis�es k�t� � � for jtj 	 T for some T � and k��� � �� If the zeros � �  � i�
of the Riemann zeta function with � 
  
 � and j�j 
 T satisfy  � �

� and
are simple� then for any y��

m � hK�y�� � m�

where

hK�y� �
X
�

k���
ei�y

�� ����
	

Hence� by �nding large values of jhK�y�j� which is less di�cult than �nding
large values of jM�x�j�px� it is possible to disprove the Mertens conjecture�
The simplest known function k�t� that satis�es the conditions of Theorem �

is based on the F%ejer kernel

K�y� �

�
sin�y

�y

��

used by Ingham� for which

k�t� �

�
�� jtj�T� jtj � T�

�� jtj � T	
��
�

This yields

hK�y� �
X
j�j�T

�
�� j�j

T

�
ei�y

�� ����
� �

X
����T



�� �

T

� cos��y � ���

j�� ����j � ����

where
�� � arg � � ����	

It is known that
P

� j� � ����j�� diverges� so that the sum of the cos�coe�cients
in ���� can be made arbitrarily large by choosing T large enough� If we could
manage to �nd a value of y such that all �y��� were close to integer multiples
of ��� then we could make hK�y� arbitrarily large� This would contradict� by
Theorem �� the Mertens conjecture jM�x�j�px 
 �� and even any conjecture of

��



the form jM�x�j�px 
 C� for any constant C � �� Jurkat and Peyerimhoff
���� observed that the size of the sum hK�y� is determined largely by the �rst
few terms since the numbers ��� ������� typically appear to be of order ����
Therefore� they searched for values of y such that

cos���y � ���� � �

and
cos��iy � ��i� � �� � for i � �� 	 	 	 � N � ��

for a suitably chosen �� N being as large as feasible� This gives an inhomoge�
neous Diophantine approximation problem� for which Jurkat and Peyerimho 
devised an ingenious algorithm� In addition� they used a kernel which is di er�
ent from the one which induces ��
�� viz��

K�y� �
�

��

�
� cos�y

�� �y�

��

� ����

for which k�t� � g�t�T � where

g�t� �

�
��� jtj� cos��t� � ��� sin��jtj�� jtj � ��

�� jtj � �	
����

This function k�t� gives more weight to the �rst cos�terms in the sum in ����
than ��
� �cf� ����� Figure ���� By applying their algorithm with N � ��
Jurkat and Peyerimho found that m 	 �	���
A remarkably e�cient algorithm of Lenstra� Lenstra and Lov�asz ����

for �nding short vectors in lattices was applied by Odlyzko and Te Riele to the
above mentioned inhomogeneous Diophantine approximation problem� It was
estimated that N � �� would be su�cient� in order to disprove the Mertens
conjecture� Any value of y that would come out was likely to be quite large�
viz�� of the order of ���� in size� Therefore� it was necessary to compute the �rst
���� �	s to a precision of about �� decimal digits �actually� ��� decimal digits
were used�� The best upper and lower bounds found for m and m were ��	��
and �	��� respectively� which disproved the Mertens conjecture� Figure � gives
the graph of the function hK�y��t�� for t 
 ��
��
�� where K is given by �����
y� is given on the next two lines�

y� � ������ ���� ��� ���� ��
� ��
�
 ���

����� ��� �� �
��
 �� �����	�������

and hk�y�� � �	������� It shows just how atypical large values of hK�y� are�
and that the local maximum found for this y� is really a needle in a haystack�
Figure � is an enlargement of the central part of Figure �� As stated above�
the disproof is ine ective� no actual value of x� nor an upperbound for x

��



Figure �� Graph of the function hK�y� � t� for t 
 ��
��
�

where jM�x�j�px becomes large� is derived in ���� Pintz �� gave an ef�
fective disproof in the sense that he showed that jM�x�j�px � � for some
x � exp�
	��� ������ In his proof the sum

h��y� T� �� �� �
X

����T

e�	�
�

�
cos��y � ����

j�� ����j


had to be evaluated for y � 
	���� ���� �the precise value is given in the last
line of Table 
 in ����� T � �	�� ���� and � � �	�� ����� This computation
was carried out by the �rst named author using the known ����digit accurate
values of the �rst ���� �	s and the ���digit accurate values of the next ����
�	s �
 �	�� �����
Various authors have computed the function M�x� systematically� in order

to �nd extrema of M�x��
p
x� Dress ���� established the bounds ��	��
 


M�x��
p
x 
 �	��� for ��� 
 x � ����� Recently� Lioen and Van de Lune

��
� veri�ed that the same result holds if one replaces the upper bound ����

on x by �	���� ���
� The computations by Dress of M�x� up to ���� took
���� CPU�hours on three Sun SPARCstations �� while those of Lioen and Van
de Lune �using vectorized sieving� took about ��� CPU�hours on a Cray C�
super vector computer�

�



Figure �� Enlargement of the central part of Figure �

The above computations of Dress� and Lioen and Van de Lune� are examples
of systematic computations of number�theoretic functions� Earlier computa�
tions of this kind� carried out in the early �s� deal with Gauss	 lattice point
problem ���� �

�� Similar results by Van de Lune and E� Wattel on Dirich�
let	s divisor problem will be published in �� ����� Recently� Lioen and Van
de Lune have developed a number of fast vectorized sieve procedures for the
systematic computation of a large variety of number�theoretic functions� Ap�
plications to other functions� like Liouville	s function and the sum of divisors	
function �for the computation of amicable numbers�� will be implemented in
the near future�

���� The sign of the di	erence ��x��li�x�
One version of the Prime Number Theorem� proved in ��� by Hadamard and
�independently� by de la Vall%ee Poussin� states that ��x� � li�x� as x � ��
This result tells us that the ratio ��x��li�x� tends to � as x � �� but it does
not say anything about the sign of the di erence ��x�� li�x�� This di erence is
negative for all values of x for which ��x� has actually been computed� However�
already in ���� Littlewood proved that ��x��li�x� changes sign in�nitely often�
In ���� Skewes obtained the upper bound

exp�exp�exp�exp��	�������


��



for the smallest x for which ��x� � li�x�� This bound was brought down
considerably by Sherman Lehman in ��� ����� who proved that between
�	�
������� and �	��������� there are more than ����� consecutive integers x
for which ��x� � li�x�� Sherman Lehman performed two major computations
to prove this result� namely a veri�cation of the Riemann hypothesis for the
�rst ������� zeros of ��s�� i�e�� for the complex zeros  � i� for which � 
 � 

�������	
�� and the computation of the zeros �

��i� of ��s� with � 
 � 
 ������
to about � decimal places�
In ������ the �rst named author proved� by using Sherman Lehman	s method

and more extensive computations� that there are more than ����� successive
integers x between �	��� ��
�� and �	�� ��
�� for which ��x� � li�x�� In this
proof� use was made of the knowledge of the truth of the Riemann hypothesis
for the complex zeros  � i� with � 
 � 
 �������� and the knowledge of
the �rst ������ complex zeros of ��s� with an accuracy of �� digits� and the
next 
����� zeros with an accuracy of �� digits� Sherman Lehman	s method is
based on �nding values of T � �� and �� for which the sum �which runs over the
imaginary parts � of the complex zeros �

� � i� of ��s��

H�T� �� �� � �
X

��j�j�T

ei�


�
e��

����

assumes a value � �� After some experimentation near the value � � ��
	��
�
suggested by Sherman Lehman� it was found that

H��������� �� ���� ��
	�������� �	������ 	 	 	 �

where the absolute value of the error was bounded above by � � ����� This
value of H was used in a rather complicated theorem of Sherman Lehman to
prove the upper bound on x given above for which ��x� � li�x��

��
� The zeros of the error term in an asymptotic formula for the mean square
of j�� �� � it�j
Let� for t 	 ��

E�t� �

Z t

�

�������� � iu�

����
�

du� t log

�
t

��

�
� ��� � ��t ����

denote the error term in the asymptotic formula for the mean square of the
Riemann zeta function on the critical line �where � is Euler	s constant�� This
function plays a central role in the theory of the Riemann zeta function� It has
mean value � ����� and in ���� the zeros of E�t��� and related topics have been
studied both from a theoretical and a numerical point of view� With respect
to the gaps between consecutive zeros� it is shown there that the function
E�t��� always has a zero of odd order in the interval �T� T � cT ���� �for some
c � �� T 	 T��� In the opposite direction it is shown that for every positive
� 
 ��� there are arbitrarily large values of T such that E�t� � � does not


��



vanish in the interval �T� T � T ����	�� An algorithm is given in ���� for the
computation of the zeros of E�t�� � below a given bound with the help of the
Euler�Maclaurin and the Riemann�Siegel formulas for computing the values
of �� �� � it� in ����� the integral is approximated by means of the repeated
Simpson rule with extrapolation� For t � �������� ������ zeros of E�t� � �
were found with this algorithm� The �rst �� of them are given in Table ��
Various statistics concerning the zeros tn� the zero di erences tn � tn��� and
graphs of E�t��� are presented in ����� As an example we give in Table 
 some
data concerning the gaps tn� tn�� between consecutive zeros of E�t���� The
numerical results obtained in ���� were considered to support the conjecture
that t��� is the best upper bound for the gaps between consecutive zeros close
to t� However� Heath�Brown ���� has shown recently that the true upper
bound is about t����

n tn n tn n tn n tn
� ����
 �� ��������� �� ����
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Table �� The �rst �� zeros t�� 	 	 	 � t�� of E�t�� �

	� Zeros of partial sums of the Riemann zeta function

In ���� Turan ��
�� related the Riemann hypothesis to certain zeros of partial
sums of the Riemann zeta function� He showed that the Riemann hypothesis is
true if there are positive numbers N� and C such that for all N 
 N� N � N�

the functions

�N �s� ��

NX
n��

n�s� �s 
 C � s � � � it�

have no zeros in the halfplane � 	 � � C�
p
N � In ���� Haselgrove ����

showed that there exist in�nitely many N 
 N for which �N �s� � � for some
s with � � �� We shall call such zeros of �N �s� special zeros� Spira �����
with the help of a computer� identi�ed N � �� ��� 	 	 	 � ��� �� 	 	 	 � �� as values
for which �N �s� has special zeros� but he did not explicitly compute any� In
���� two di erent methods have been studied for the explicit computation of
special zeros of �N �s�� The �rst method systematically �nds� for given N � the


��



n dn �� tn � tn�� dn�t
���
n�� dn�t

���
n�� log dn� log tn
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Table 	� Various data about the gaps between consecutive zeros of E�t�� �

special zeros �if any� of �N with imaginary part in a given interval� The second
method uses the property of �N �s� that it is an almost periodic function in t
����� which roughly means that if we consider the function �N �� � it� for �xed
� in a given t�interval� and give a � � �� then this part is repeated somewhere
else� possibly not exactly� but with an error �in some norm� less than �� Several
almost periods were computed and by adding these to zeros of �N �s� with real
part very close to � �but not necessarily greater than ��� many special zeros
were found explicitly� In the next Subsection we shall brie�y explain the two
methods� and give some examples� For details� we refer to ���� and ���� pp�
�������
In ��
� H�L� Montgomery ���� proved that if c is such that � 
 c 
 �

� ���
then for all N � N��c�� �N �s� has zeros in the half�plane

� � � � c
log logN

logN
	

This implies that the Riemann hypothesis cannot be proved by means of Tu�
ran	s implication�

���� A systematic method for �nding special zeros of �N �s�
This method is based on some knowledge of the zero curves of the real and
imaginary parts of �N �s� in the complex plane� De�ning

RN ��� t� �� ��N �s� �
NX
n��

cos�t logn�

n


�




and

IN ��� t� �� ��N �s� � �
NX
n��

sin�t logn�

n
�

we obviously have �N �s� � � if and only if both RN ��� t� � � and IN ��� t� � ��
First we consider the zero curves of RN ��� t�� It is easy to see that RN ��� t� �

� for � 	 � so that the zero�set of �N �s� is located in the halfplane � 
 �� An
analysis for large negative � shows that the zero set of RN ��� t� consists of
simple zero curves having

���
��k � ���i

� logN
�k 
 Z�

as asymptotical points� A further analysis shows that a zero curve starting at
one of these asymptotic points moves to the right� makes a U�turn� and �re�
turns� to some other asymptotic point at � � �� �possibly not a neighboring
one��
For the zero curves of IN ��� t� an analysis for large negative � shows that

the zero set of IN ��� t� consists of simple zero curves having

���
k�i

logN
�k 
 Z�

as asymptotical points� so these curves alternate with those of RN ��� t� at
� � �� with a �xed distance of ���� logn�� For large positive � the zero
curves of IN ��� t� turn out to have

���
k�i

log �
�k 
 Z�

as asymptotical points� The zero curves starting at one of these points at
� � �� show two di erent patterns� some go to the right� and return to some
other point at ��� others traverse the s�plane� and go to one of the asymptotic
points at � � ��� The complete pattern is sketched in Figure 
� This suggests
the heuristic principle on which the systematic method in ���� is based� �nd
an interval �t�� t�� on the line � � � where a zero curve of RN ��� t� crosses this
line two times �i�e�� where RN ��� t�� � RN ��� t�� � �� and RN ��� t� 
 � for
t� 
 t 
 t��� Check whether a zero curve of IN ��� t� crosses the line � � �
in �t�� t��� i�e�� check whether IN ��� t� changes sign between t� and t�� If so�
there must be a special zero of �N �s� nearby� namely where the zero curves
of IN ��� t� and RN ��� t� intersect� This point can then easily be found with
Newton	s method� Usually it lies close to ��� t� � ��� t�� or ��� t���
The zeros of RN ��� t� on the line � � � can be found systematically by using

the maximum slope principle as follows� Since

RN ��� t� �

NX
n��

�

n
cos�t log n�


��



Figure 	� Sketch of the zero curves of RN ��� t� �solid� and IN ��� t� �dotted�
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we have

�

�t
RN ��� t� � �

NX
n��

logn

n
sin�t logn�

and

sup
t�R

�����
NX
n��

logn

n
sin�t logn�

����� �
NX
n��

logn

n
��MN 	

Hence� we have a �xed upperbound for �RN ��� t���t� This implies that if
RN ��� a� � b with b � �� then also RN ��� t� � � for

a� b

MN

 t 
 a�

b

MN
	

Starting with t � � and RN ��� �� �
P

��n�N n�� � �� we jump forward with
steps RN ��� t��MN until we �nd a value of t for which RN ��� t� 
 � for some
suitably chosen � � �� The maximum slope principle guarantees us that so far
we have not passed a sign change of RN ��� t�� Then we take a suitably chosen
step � hoping to �nd a negative value of RN � thus crossing a zero of RN ��� t�
and hence a point where the zero curve of RN ��� t� crosses the line � � �� A
similar procedure is followed to �nd the next sign change of RN ��� t� �from
negative to positive�� If successful� we have found two consecutive points on
the line � � � where a zero curve of RN ��� t� crosses this line� and then we start
to �nd a zero of IN ��� t� between these two points in a similar way in order to
trace a possible special zero� This search is continued until all the intervals on
the line � � � with � � t � T �for some suitably chosen T depending on the
CPU�time we wish to spend� have been found where the zero curves of RN ��� t�
cross that line� It should be remarked that this search method may miss two
very close zeros of RN ��� t� in case their distance is smaller than �� However�
in that case �which we regard as improbable in view of our experiments with
various choices of � and �� there is only a very small chance that just in between
these close zeros a zero curve of IN ��� t� crosses the line � � ��
This search method has been re�ned in several ways ����� and ������ It was

implemented on a CDC ���� computer and it quickly yielded the smallest spe�
cial zeros of �N for N � � and �
� and� after more computational e ort� also
for N � ��� ��� ��� 
� and ��� For N � �� no special zero of �N �s� was found in
the interval � � t � ��� ���� ���� However� with the �non�exhaustive� method
described in the next section� we were able to �nd a special zero of ��� near
t����������� �cf� Table � below�� but this left us with the question whether
that zero is the smallest special zero of ���� Only recently� the �rst author suc�
ceeded to �nd the smallest special zero of ��� with the systematic method� in a
computation which took about ��� CPU�hours on an SGI workstation� Table �
lists the values of N and the corresponding smallest special zeros �rounded to
� decimal digits� found by means of the systematic search method described
above�
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Table 
� Smallest special zeros of �N �s� found with systematic search method

���� A special zero search method based on almost periods
As indicated in the previous section� the function �N �s� is almost periodic in t�
If we would know a good almost period� we could add some of its multiples to
nearly special zeros of �N �s�� and hope to �nd a special zero s� of �N �s� with
�s� � �� The nearly special zeros could have been found with the systematic
method of the previous section�
Crucial for exploiting this idea is to have good almost periods� Let pj be

the j�th prime �p� � �� p� � 
� 	 	 	�� let ��x� be the number of primes � x�
and let j� 
 f�� �� 	 	 	 � ��N�g be �xed� If we have �su�ciently good� �to be
speci�ed later� approximations of the ��N� �� �� numbers log pj� log pj� by
rational numbers with the same denominator� then this gives a good almost
period of �N �s� as follows� Let k be the common denominator� i�e��

k
log pj
log pj�

 �j mod �

where �j� � � and the other �j 	s are small �but not zero� since the logarithms
of the primes are linearly independent over Q�� Let the decomposition of n

�� N� into primes be written as n �
Q��N

j�� p
�j�n
j � Then for T �� ��k� log pj�

and for any �xed s 
 C we have

�N �s� iT � �

NX
n��

n�s exp��iT logn�

and

T logn � k
��

log pj�

��NX
j��

�j�n� log pj � ��

��NX
j��

k
log pj
log pj�

�j�n�

 ��

��NX
j��

�j�j�n� mod �	
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If the �j 	s are small enough� we may expect T logn mod � to be small� so that
j�N �s�iT ���N�s�j will be small� for any s 
 C � In ����� we have applied two al�
gorithms to �nd rational approximations of log pj� log pj� � �j � �� �� 	 	 	 � ��N��
j �� j��� namely the modi�ed Jacobi�Perron �� and the Szekeres algorithm
��
��� the latter of which turned out to be more e�cient than the former� We
carried out various experiments� and in Table � we present the special zeros
of �N �s� �rounded as in Table �� which we found for those values of N for
which we could not �nd special zeros by means of the systematic method of
the previous section�
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Table �� Special zeros of �N �s� found with the �almost period� method

About �ve years after the publication of ����� the well�known LLL�algorithm
was published ����� and we expect that algorithm to yield much better results
than the two other algorithms mentioned above� This implies that by means
of the LLL�algorithm it might be possible to �nd special zeros of �N �s� with
smaller imaginary parts than those given in Table ��


� Factorization of large positive integers

Because of its fundamental role in the theory of the natural numbers� the
problem of decomposing a given number into its prime factors ��factorization��
has always attracted much attention from number theorists� both professionals
and laymen� The discovery� in ���� by Rivest� Shamir and Adleman �����
that the di�culty of factoring large numbers can be exploited in the design
of so�called public�key cryptographic systems� has added an extra dimension
to the natural attractivity of this �eld of research� In particular� the question
of the size of the numbers which can be factored within a reasonable amount
of physical time� is permanently actual here� because the safety of the crypto�
systems mentioned above depends heavily on the answer�
For a given number to be decomposed into prime factors� one usually starts
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checking for small prime divisors by trial division up to a certain bound� Next�
a compositeness test like the Rabin�Miller test �
�� pp� �������� is applied
to the remaining number� which determines with a high probability whether
this is composite� If the test proves compositeness� one attempts to factor
the number� If the test fails to prove compositeness� an attempt is made to
prove that the number is prime� Until ���� the available primality tests of
N required the knowledge of the prime factors of N � � �or N � ��	 	 	 � and
became impractical for numbers having more than ��� digits� A breakthrough
came when Adleman� Pomerance and Rumely ��� found a method to test
primality of much larger numbers� This test was simpli�ed and improved by
H� Cohen and H�W� Lenstra� Jr� ���� The resulting test was implemented
by A�K� Lenstra and H� Cohen with the help of Dik Winter �
��� and
made it possible to prove primality of numbers up to 
�� decimal digits in a
few minutes CPU�time� At present� one is able to prove primality of numbers
with ���� and more digits ��� ���� For an excellent treatment of old and modern
primality tests� see �
�� pp� ������� and pp� �
�������
The size of the numbers which could still be factored at a given time with

the available algorithms and computer technology� was about �� decimal digits
in ��� ���� p� ���� ����� in ��� �
� Figure �� p� ����� ����� in ��� ������
and �����
� in �� ���� This illustrates the rapid developments� both in
algorithms and in hardware� if we realize that for the best known methods the
computational e ort roughly doubles if the number to be factored grows with
��
 decimal digits�
Two important algorithmic discoveries have e ectuated a jump in the size

of the numbers which can be factored within a reasonable time� the quadratic
sieve method �QS� published in its modern form in ��� ����� �but with main
ideas going back to ��� ��
��� and the elliptic curve method �ECM� published
in ��� ����� ECM is suitable to �nd factors up to 
���� decimal digits of large
numbers� Its complexity� as conjectured theoretically� and as observed in the
experiments� depends primarily on the size of the smallest prime factor p of
the number N which we wish to factor� Whether or not ECM �nds a factor
of N depends on the smoothness of the order of certain elliptic curve groups
mod p which are known to lie in the interval �p� �� �

p
p� p� �� �

p
p�� The

complexity of the quadratic sieve method depends on the size of N � and not on
its prime factors� It is still the method by which the largest numbers �not of
a special form like an � b where a and b are small compared to N� have been
factored� ECM and QS are methods which complement each other nicely� one
usually tries ECM �rst in order to �nd factors less than ���
� decimal digits
�or 
��
� if more computer power is available�� and in the next step QS is tried�
provided that the number to be factored is small enough� popularly spoken�
ECM �nds smaller factors of larger numbers� QS �nds larger factors of smaller
numbers�
A third method� called the Number Field Sieve �NFS� and published in �


���� ���� is expected to be more e�cient for general numbers than the quadratic
sieve� and it is the subject of intensive current research to �nd out where the


�



cross�over point between NFS and QS lies� For numbers of the special form
an � b �as above�� NFS is known to be more e�cient than QS�
At CWI much time and e ort has been spent on the e�cient implementation

of QS on large vector mainframes like the CDC Cyber ���� the NEC SX��� and
the Cray Y�MP and Cray C� vector computers ����� ��� ���� ����� Two
�factors� have favoured this approach� �rstly� the bulk of the computational
work in QS consists of adding �xed quantities to numbers in a large array at
positions which lie in an arithmetic progression� so this work is suitable for
vectorization� secondly� CWI has always had excellent facilities for access to
large vector computers� including an abundance of low�priority CPU�time�
In the course of years� various new factorization records have been estab�

lished by the CWI Computational Number Theory group� Almost all factored
numbers were contributions to the so�called Cunningham Table ���� and to an
extension of this table ��
�� Several factorizations contributed to the proof of
the non�existence of odd perfect numbers below ����� ����� and below ��
��

�����
A survey of modern integer factorization algorithms is presented by Peter

Montgomery in this CWI Quarterly Issue� In Section ��� we will sketch the
principal steps of the quadratic sieve method �QS�� and list the factorization
records obtained with QS at CWI on vector computers in the past eight years�
In Section ��� we explain the latest QS� and NFS�results obtained at CWI
�partly in cooperation with Oregon State University��


��� The quadratic sieve method
Suppose that we wish to factor the large integer N � which by the little theorem
of Fermat is known to be composite� and whose smallest prime divisor could
not be found by trial division� Pollard Rho� Pollard p � �� Williams	 p � ��
or ECM ���� The idea of the quadratic sieve is to �nd two di erent integers
X and Y which satisfy the congruence X�  Y � mod N � from congruences of
the form U�

i  Wi mod N � the latter congruences being generated by means
of a quadratic polynomial� and where the numbers Wi are such that they only
consist of prime factors below some bound B� A pair �Ui�Wi� is called a
relation� As soon as more relations �Ui�Wi� have been found than the total
number of di erent prime factors which occur in all of the Wi	s� then indeed
such an �X�Y ��congruence can be found �see Steps � and � of the QS algorithm
below�� Next we compute d �� gcd�X � Y�N� by Euclid	s algorithm and if
� 
 d 
 N � then d is a proper divisor of N � If insu�ciently many �Ui�Wi��
pairs have been found with the help of one quadratic polynomial� then more
polynomials are constructed following ideas of Peter Montgomery ������
The one�polynomial version of the quadratic sieve method can be explained

as follows� Let U�x� �� x� bN���c �where byc is the greatest integer � y�� and
W �x� �� U��x��N � x 
 Z� and x� N���� Then we have

U��x� W �x� mod N

and


��



W �x� � �xN��� � N	 ����

Hence� W �x� can be expected to be easier to factor than N � Moreover� since
W �x� is a quadratic polynomial� it has the nice property that if pjW �x�� for
some x� 
 Z� then also pjW �x� � kp�� for all k 
 Z� Such an x� can be found
for given p as follows�

W �x�  � mod p implies that �x� bN���c��  N mod p�

this equation generally has two solutions ifN is a quadratic residue of p �shortly

denoted by the Legendre symbol as�


N
p

�
� ��� These solutions can be com�

puted easily ���
� pp� ��������� Similar results apply for powers of the prime
p� We now give the di erent steps of the Quadratic Sieve factorization
algorithm �QS��

�� Choose a factor base FB �� fq � pe � B j p prime and


N
p

�
� �g

for some suitable B �these are the prime powers which can occur in the
W �x��values� which we wish to factor completely��

�� �q 
 FB solveW �x�  � mod q� this yields two solutions� denoted by rq�
and rq��


� Initialize a sieving array SI�j�� j � �M� 	 	 	 �M � �� to �� where M is
suitably chosen�

�� �Sieving� �q 
 FB� �j 
 ��M�M � �� such that j  rq� mod q or j 
rq� mod q� SI�j� �� SI�j� � log p	

�� �Selection� Select those x 
 ��M�M��� for which jSI�x�j � log�MN����
and store these numbers into x�� x�� 	 	 	� �Because of ���� and the fact
that log jW �x�j is very slowly varying for x 
 ��M�M���� we may expect
theW �xi� to be composed only of primes which belong to the factor base
FB�� Write W �xi� as

W �xi� � �����i�

FY
j��

p
�ij

j �

where p�� p�� 	 	 	 � pF are the primes in the factor base FB� Associate with
xi and W �xi� the vector of exponents �

T
i � ��i�� �i�� 	 	 	 � �iF ��

�� �Gaussian elimination� Collect at least F �� completely factoredW �xi��
values �assuming this is possible for the current choice of B and M� and
�nd linear combinations of vectors �i which� added �mod ��� yield �� This
can be carried out by means of Gaussian elimination �mod ���

�� Multiply thoseW �x��values whose linear combination of exponent vectors
yield the ��vector� This implies that we have found a congruence of the
formX�  Y � mod N � compute these X and Y � and gcd�X�Y�N� which
should yield a factor of N with probability at least �	�� If this gcd equals
� or N � then try another linear combination of exponent vectors� in our
experience� the Gaussian elimination always yields more than one linear
relation� although theoretically it might yield precisely one�
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The most time�consuming part of this algorithm is Step �� because in order to
factor a large number N � the parameters B andM have to be chosen very large
�implying many primes in the sieving step and a long sieving array�� Step �
also consumes a non�trivial portion of the computing time� it has to select
those values of x for which SI�x� is large� The Gaussian elimination Step �
deserves special attention� not because of the time� but because of the memory
it requires�
We have vectorized our Fortran program on the following vector computers�

Cyber ���� NEC SX�� ����� Cray Y�MP ������ and Cray C�� For Step � we
measured maximum speeds of �
� �� ���� and ��� million �oating point ad�
ditions per second� respectively� These speeds were obtained with the smallest
sieving primes� in that case the number of additions in the sieving array SI is
large enough to reach vector performance� However� if we increase the sieving
primes� the performance degrades� because the vector lengths decrease� For
Step �� in which comparisons rather than additions are done� we measured ���
�� ���� and 
�� million comparisons per second on the Cyber ���� NEC SX���
the Cray Y�MP� and the Cray C�� respectively�
Several re�nements were implemented in our program� Here� we mention

them brie�y� for details� see ����� �����

�� Use of a multiplier� Sometimes� it is worthwile to premultiply the number
N which we want to factor by a small integer� with the purpose to bias
the factor base towards the smaller primes�

�� Small prime variation� When we sieve with a prime p� the number of
sieving steps is b�M�pc� This number is largest for small prime p� and in
that case its corresponding log p�value does not contribute too much to the
total log jW �x�j�value� Therefore much time is saved by not sieving with
the smallest primes� and compensate for that by lowering the threshold�
value in the selection step� The price to pay is the generation of some
W �values which are not fully factorizable over the primes in the factor
base �see also the next re�nement��


� Large prime variations� By lowering the report�threshold with a suitably
chosen value� we accept W �x��reports which are not completely factoriz�
able with the primes from FB� Let the remaining part in such reports
be denoted by R� In the one�large�prime variation of the quadratic sieve
we accept those reports for which R is a prime� the corresponding re�
ports are called partial relations� In the two�large�primes variation of QS
we also accept those reports for which R is the product of two primes�
the corresponding reports are called partial�partial relations� The partial
and partial�partial relations which will come out have to be combined� if
possible� to relations which factor completely over the factor base�
In case of the one�large�prime variation� this amounts to sorting the par�
tial relations according to their �big� primes� and �nding relations with
the same large prime� If we have k 	 � relations with the same large
prime� we can deduce k � � new complete relations from them by multi�
plying the second by the �rst� the third by the �rst� etc�
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In the two�large�primes variation� the problem can be formulated in terms
of �nding all the basic cycles in a graph �����

�� Generation of polynomials� We choose U�x� � a�x � b and W �x� �
a�x� � �a�bx � a�c with b� � N � a�c� a� � p

�N�M � and jbj 
 �
�a

��
Then we have U��x� W �x� mod N and there are many possible choices
for a and b �c follows from a and b�� each choice yielding a new polynomial�
For details about e�cient polynomial generation in the quadratic sieve
method� we refer to ����� ���� ���� 
��

In Table � we give some �gures about record factorizations found at CWI
on vector computers� All the results were obtained on one processor of the
vector computer listed� On the Cray Y�MP we could have used four CPUs�
thus reducing the sieving time by a factor of about four� since Steps ��� of
the quadratic sieve algorithm are almost perfectly parallelizable �each CPU is
given its own polynomial for sieving and selection��

year machine size of sieving Gaussian approximate
numbers time elim� time order of
�decimals� �hours� �seconds� sparse system

��	
 Cyber ��� ���� ��� �� ��� �� 
����
�� ���� �� �����

��		 NEC SX�� ��� ���� 	� �� ��� �	�	��
�� �� ��� ������

���� Cray Y�MP ���� ��� ��� �	�� ������

Table �� Record factorizations with QS on vector �super�computers


��� Recent results
The latest records were obtained in the summer of �� with the help of the
Cray C� at SARA �The Academic Computing Centre Amsterdam�� and many
workstations at Oregon State University and CWI� a ����digit Cunningham
number was factored with the �Special Number Field Sieve� �SNFS� for which
the number N to be factored has the form N � an � b� a and b being small
compared to N�� and a ����digit number was factored with the �General Num�
ber Field Sieve� �GNFS� for which no special form of N is known�� For de�
tails� see ��� and ����� One month after the latter result was obtained� Arjen
Lenstra� Bruce Dodson� and Peter Montgomery cracked a ����digit partition
number with GNFS� On November ��� �� Scott Contini� Bruce Dodson� Ar�
jen Lenstra� and Peter Montgomery completed the factorization of a ���digit
cofactor of the ��
�digit �
���th partition number p��
���� into two primes of
�� and �� digits using GNFS� From the time they used �about ��� mips years�
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they estimate that this is about ��� times less than what they would need to
factor a number of comparable size with PPMPQS�
Peter Montgomery and Marije Huizing factored several other numbers with

SNFS �of �� � ���� ��� ��
� �
�� and �
� decimal digits� including some
more and most wanted Cunningham numbers� using Montgomery	s new algo�
rithm for computing the square root of the product of many algebraic numbers�
and his new iterative block Lanczos algorithm for �nding dependencies in large
sparse matrices over GF��� ���� Marije Huizing also factored an ���digit num�
ber with GNFS� Certainly not a record� but worth mentioning here was the
factorization� in June ��� of a �digit cofactor of the more wanted number
with code �����M C�

� from the Cunningham table� This �C�

� is the
composite number of �

 decimal digits ����� � ���	 � ����� � ���
�� Mont�
gomery had found a 
��digit prime factor of this number with ECM� and left
a �digit composite cofactor� We decomposed it into the product of a �� and
a ���digit prime by using the one�large�prime variation of the quadratic sieve�
with the help of all processors of an eight processor IBM ��� SP�� and �
Silicon Graphics workstations� The total amount of time for the sieving was
about ����� workstation CPU�hours� The calendar time for this factorization
was about four weeks� The Gaussian elimination step was carried out on a Cray
C�� it required about ��� Gbytes of central memory� and one hour CPU�time�
At various occasions� CWI has �donated� idle workstation cycles to joint

Internet factorization projects ��� ��� ��� ���
Currently� most factorization research at CWI aims at contributing to the

Cunningham table ���� and to the extended Cunningham table ��
�� In the �rst
update to the table ��
�� all the composite numbers with less than �� decimal
digits were completed� This bound has been raised now �December ��� to
� decimal digits� Marije Huizing is experimenting with an implementation
of GNFS on a CWI cluster of �� workstations ����� Henk Boender and the
�rst named author are carrying out experiments on the Cray C� with the
two�large�primes variation of the quadratic sieve method� in order to collect
experience with this method� and to �nd out where it beats the one�large�
prime variation of the quadratic sieve ����� Test numbers are the numbers of
� and more decimal digits from ��
� which are known to be composite� but
whose factors are still unknown�

�� Aliquot sequences and generalizations

Many computational papers have been published on sequences which are ob�
tained by repeated application of a given number�theoretic function f�n�� For a
concise survey� see ������ A notorious example is the �
x����sequence �known
in the literature under various di erent names� where f�n� � n�� if n is even�
and f�n� � 
n � � if n is odd� Starting� e�g�� with n� � �� and de�ning
ni�� � f�ni�� i � �� �� 	 	 	� we �nd n� � ��� n� � �� n
 � ��� 	 	 	 � n�� � ��
n�	 � �� n�� � �� n�� � �� so that the sequence becomes periodic� All in�
stances of such f �sequences computed so far eventually run into this cycle� but
no proof is known that this holds for all n 
 N� There is extensive literature
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concerning this problem ���� Problem E���� In Section ��� we shall report on
aliquot sequences and cycles� which have been the subject of much research at
CWI� In Section ��� we shall discuss generalizations of aliquot sequences�

���� Aliquot sequences and cycles
Aliquot sequences arise when we repeatedly apply the function

s�n� � ��n� � n

to a given starting value� where ��n� is the sum of all the divisors of n and s�n�
is known as the sum of the aliquot divisors of n� Since � is a multiplicative
function� we can compute it quickly if we know the factorization into primes
of n� but this also means that computing aliquot sequences actually becomes
di�cult if the terms become large� There are �ve starting numbers 
 �����
namely ���� ���� ���� ���� and �� for which it is not known whether the
corresponding aliquot sequence terminates at � �the previous term being a
prime number�� becomes periodic� or is unbounded� The terminating sequence
with largest known maximum value is the one which starts with ���� Guy and
Guy ��� and� independently� Creyaufm�uller �
�� found that s�������� �
���� and s�������� � �� while the ����sequence reaches its maximum at

s�������� � 
��
�������
�����������
������������������
��

� ��	����������	��
�
�
������	��
���������������
	

The latest published status report on aliquot sequences is ���� Creyaufm�ul�
ler �
�� reports to have computed the terms s��������� s��	������ s����������
s
�������� and s
�	����� having ��� ��� �
� ��� and �� decimal digits� respec�
tively� The �rst named author has constructed an aliquot sequence with more
than ��� monotonically increasing terms ������ This result is based on the
observation that if n is an even perfect number� i�e�� n � �k��q� q � �k � �� q
prime� and if m is an odd number such that gcd�q�m� � �� then the aliquot
sequence starting with the number mn increases monotonically as long as
gcd�q� ti�m�� � �� i � �� �� 	 	 	� where t�m� � ���m� � m� H�W� Lenstra�

Jr� ���� proved that for every integer k there exists an aliquot sequence with
k monotonically increasing terms�
When n is a perfect number� i�e�� a number for which ��n� � �n� its aliquot

sequence is n� n� ���� and this is a periodic sequence with period length �� As is
well�known� the even perfect numbers have the form n � �k����k � ��� where
k is an integer such that �k� � is a �Mersenne��prime� At present� we know 


even perfect numbers� namely for k � �� 
� �� 	 	 	 � ������ ����
� ���

� The
number ���	�

 � � is the largest known prime number� consisting of ������
decimal digits� Concerning odd perfect numbers� it is known that if they exist�
then they are larger than ��
�� �����
An aliquot sequence&period of length � is called an amicable pair and such

a sequence has the pattern n� m� n� ���� where m � ��n��n and n � ��m��m�
So an amicable pair �n�m� may be de�ned as�


��



��n� � ��m� � n�m� n 
 m	 ���

The smallest amicable pair is

n � ��� � ���	��� m � ��� � ����	

This was known already in the ancient times of Pythagoras� The largest known
amicable pair has ���� decimal digits� It was found around ��� by Holger
Wiethaus� a student of E� Becker in Dortmund� Germany� and communicated
by Yan and Jackson in ��
��� Many tens of thousands of amicable pairs are
known ����� ��� but the question of the existence of in�nitely many amicable
numbers is still unanswered� Recently� Cohen et al� ���� have introduced
a natural generalization of amicable numbers� called multiamicable numbers�
de�ned as follows� Two numbers m and n are ��� ��amicable if

��m��m � �n and ��n�� n � m

for positive integers � and � If � �  � � then m and n are amicable�
Example� m � ���� � �


�	�� and n � ������ � �

��	�� form a ��� ���
amicable pair�
Essentially four di erent methods are known to �nd amicable pairs�

�� The �rst is an exhaustive� numerical search method in which a number
n is chosen� m �� ��n�� n is computed� and� if m � n� t �� ��m��m is
computed� If t � n� �n�m� is an amicable pair� By letting n run through
a given interval� one �nds all amicable pairs �n�m� with n in that interval�
Exhaustive lists of amicable pairs were computed in this way by Rolf
����� �to ����� Alanen et al� ��� �to ����� Bratley et al� ���� �to
����� Cohen ���� �to ����� Te Riele ����� �to ������ andMoews et al�
���� �to ������ Moews et al� found 

�� amicable pairs below �����

�� In the second method an assumption is made about the prime structure
of n and m� for example n � �kpq� m � �kr� where k 
 N and p� q and r
are mutually di erent primes� Substitution in ��� leads to Eulers rule
for amicable numbers� n � �kpq and m � �kr are amicable numbers�
if the three integers p � �k�jf � �� q � �kf � � and r � ��k�jf� � �
are primes� with f � �j � � and k � j 	 �� This rule yields amicable
numbers for the �ve pairs �k� j� � ��� ��� ��� ��� ��� ��� ��� �� and ���� ���
������ the three amicable number pairs known for j � � are the only ones
for k � ��� ��� �����


� In the third method� amicable numbers are constructed from special num�
bers called breeders ����� which may be amicable numbers themselves
������ To illustrate this� we give two rules for generating amicable num�
bers� from which many thousands of new amicable numbers have been
generated�
Rule � ���
� Let �au� ap� be a given amicable pair with gcd�a� u� �
gcd�a� p� � �� where p is a prime� If a pair of prime numbers �r� s�


��



with r 
 s and gcd�a� rs� � � exists� satisfying the bilinear Diophantine
equation

�r � p��s� p� �
��a�

a
���u���

and if a third prime q exists� with gcd�au� q� � � and q � r� s� u� then
�auq� ars� is also an amicable pair �by using the de�nition of an amicable
pair� it is easy to see that the right hand side above is an integer��
The next rule was suggested partly by the results of the systematic search
for amicable pairs 
 ���� ������ It is a generalization of a rule given in
����� and also Rule � is a special case of it� One di erence is that a and
u need not be relatively prime�
Rule � ����� Let a� u and x be such that au� ax � ��au� � ��a��x����
Take any factorization of C � �x � ���x � u� into two di	erent factors�
C � D�D�� Then� if the numbers si � x � Di for i � �� �� and also
q � u�s��s� are primes not dividing a� then �auq� as�s�� is an amicable
pair�
Other rules are given in ���� and ������

�� The fourth method is based on the following observation of Erd'os� Let
x�� x�� 	 	 	 be solutions of the equation ��x� � s� then any pair �xi� xj� for
which xi � xj � s is an amicable pair� If we have about

p
s solutions of

the equation ��x� � s� and if these solutions are �randomly� distributed
in the interval ��� s�� then we have a reasonable chance to �nd a pair of
solutions which has sum s� Inspection of lists of known amicable pairs
shows that in most cases s consists only of small prime divisors� In �����
an algorithm is presented for �nding as many solutions of ��x� � s as
possible� by the use of a table of precomputed values of ��pa� for all
primes p and exponents a such that ��pa� 
 B� where B is suitably
chosen� Running this algorithm for many �smooth� values of s �i�e��
values which only consist of small prime factors�� we obtained more than
��� new amicable pairs� To give an example� s � 
� ��� yielded the two
amicable pairs �����

��
�	�
	�
	��
	��
�� �
�
	���	��	����
�

and
��	�	��	��	���	��
� �	�	��	��
	��
	�
��	

In ��
� L�E� Dickson ���� de�ned an amicable k�tuple as k positive
integers �n�� n�� 	 	 	 � nk� for which

��n�� � ��n�� � 	 	 	 � ��nk� � n� � n� � 	 	 	 nk	

For k � � this reduces to ���� Our method for �nding amicable pairs
also applies to �nding such k�tuples for k � �� among the solutions of
��x� � s just try to �nd the k�tuples which sum up to s� In fact� as
k increases� the chances to �nd k�tuples grow� For example� if we have


��



N solutions of ��x� � s� then there are N�N � ���N � ���� possible
triples to check for k � 
� against N�N � ���� pairs for k � �� With this
method� we have found ��� amicable triples below ��� ������ whereas the
total number of amicable pairs below ��� is ���

As contrasted with the abundance of known aliquot cycles of length �� not
many cycles of length 	 
 are known� There are 
�� �� �� �� �� and � known
cycles of length �� �� �� �� � and ��� respectively ���� ��� ��� ���� As far as we
know� Borho ��
� is the only one who has given rules for constructing aliquot
cycles of length � �� and � of the 
� known ��cycles were constructed by means
of one of his rules� The starting values of the smallest cycles of length �� ��
�� ��  and �� are �������� ����� ��������
� ���������� �������� and
��
��� respectively� It is not known whether or not there exist aliquot 
�cycles�

���� Generalizations of aliquot sequences
If� instead of summing all the divisors of n� one would sum the unitary divisors
of n �i�e�� the divisors d of n for which gcd�d� n�d� � ��� we can adapt the
ideas of aliquot sequence to obtain unitary aliquot sequences ���� Problems
B
 and B��� This has been generalized ���� to aliquot f �sequences where f
is an arithmetic function which determines which divisors are to be summed
when we go from ni to ni�� in an aliquot f �sequence� Various theoretical and
computational results have been derived in ����� like proofs of the existence of
aliquot f �sequences with arbitrarily many monotonically increasing terms� and
of the existence of unbounded sequences for certain choices of f � For example�
if f is the multiplicative function de�ned by f�pe� � pe� pe��� p prime� e 
 N�
and if we start with n� � ��� � �	
	�	�	��� we �nd n� � f�n���n� � ����� �
�	
	��
� 	 	 	 � n�	 � ����� � �	
��	�	��� n�� � ������ � �	
���
� 	 	 	 � where
the omitted terms are monotonically increasing� It is not di�cult to prove that
the terms n�� 	 	 	 � n�� are repeated as the next � terms after multiplication by
the factor 

� and so on� so that this is an unbounded aliquot f �sequence�

�� Four smaller projects

���� The Goldbach conjecture�s�
The Goldbach conjecture� expressed by Goldbach in a letter to Euler in �����
says that every even number can be expressed as the sum of two primes �if
we consider � a prime� as Goldbach did�� In fact� this conjecture is a big
�understatement�� experiments show that the number of representations of an
even number n as the sum of two primes grows quickly with n �albeit not
monotonically�� so a proof of the Goldbach conjecture would only provide a
very poor lower bound� namely �� for the number of representations� In ����
�� we have veri�ed the Goldbach conjecture on a Cyber ��� vector computer
up to �� ���� ����� This extended Stein and Stein	s previous bound ��� ��
���
Recently� Sinisaldo ����� has extended our bound to �� �����
The principle of how we veri�ed the Goldbach conjecture on the Cyber ���

vector computer is as follows� In order to verify the Goldbach conjecture for
the even numbers in a given interval �N�� N�� �assume N� and N� to be even��


��



a straightforward approach is to start with n � N� and �nd the smallest prime
p such that n� p is also a prime� Next� do the same for n� �� n� �� 	 	 	� until
N� is reached� A disadvantage of this approach is that repeatedly primality has
to be checked of the same number� Moreover� vectorization is not possible� To
overcome this� one prepares a table of the primes between N� � p and N� � 
�
inclusive� where p is a suitably chosen prime� This can be done quickly� with
the help of the Sieve of Eratosthenes� One then starts to check primality �by
table look�up� of the odd numbers N� � �i � 
 for i � �� �� 	 	 	 � �N� �N�����
This �nds all even numbers in the interval �N�� N�� which can be written as the
sum of 
 and some other prime� This step can easily be vectorized on a vector
computer� In the next step� primality is checked of the numbers N���i�� for
i � �� �� 	 	 	 � �N��N���� �except for those values of i for which N���i�
 was
recognized to be prime in the previous step�� This step is repeated with the
primes �� ��� 	 	 	 � p� The possibility to vectorize these steps gradually decreases�
because the number of even numbers in �N�� N�� for which no representation
as a sum of two primes has been found� also decreases as the number of steps
increases� Therefore� at a certain point the remaining even numbers are treated
with the straightforward approach described above� Walter Lioen assisted us
with the optimization of our program� by the inclusion of several machine�
dependent technical re�nements� for which we refer to ����� Let p � p�n� be
the smallest prime such that n � p is prime� We have veri�ed the Goldbach
conjecture for the even numbers up to ������ at the expense of about �� CPU�
hours on the Cyber ���� The largest p�n��value we found is p������
��
����� �
���� We also included some statistics and results based on the Prime k�tuplets
Conjecture of Hardy and Littlewood� supporting these statistics� The largest
p�n��value known at present is p���������������� � 
��
 ������
The correspondence between Goldbach and Euler contains a few other �Gold�

bach conjectures�� One of them� dating back to ����� reads

�n� � � p� �k�� p prime� k 	 �	

However� in ���� Stern found that �n � � � ���� and �n � � � �
 are
exceptions� and thereafter this conjecture �or� rather� its remains� has not
received any noteworthy attention� Since no other exceptions have ever been
found� it seems reasonable to save the plausibility of the conjecture by adding
the clause �with at most �nitely many exceptions� �FE� for short�� With this
in mind� the second author and Walter Lioen have tried to generalize this as
follows� for any �xed odd m 	 � one has

�n� � � p� �mk�� p prime� k 	 � �FE�	 ����

A numerical check for �n � � 
 ��	 resulted in Table �� Similarly� for �xed
m 	 �� 
 � m� they conjecture that

�n� � � p� �mk
� p prime� k 	 � �FE�	 ����

The corresponding observations are given in Table �� Further generalizations
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m number largest found
� � �
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���
� �
� �������
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��� ������
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��� ����
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Table � Exceptions to ����

m number largest found
� 
�� ��
���
� � �����

� ���� 
����
���

Table �� Exceptions to ����

along these lines do not seem plausible�
In ���� Lagrange conjectured that

�n� � � p� �q� p and q odd primes�

the only exceptions being �n�� � 
� �� and �� Some experiments were carried
out by the second author and Walter Lioen in order to check the plausibility
of the following more general conjecture� for any �xed integer m 	 � one has

�n� � � p� �mq� p and q odd primes �FE�	 ����

The corresponding observations are given in Table � We conclude this section
with a problem� Let � be the supremum of all real �	s for which

�n� � � p� ��k��� p prime� k 	 � �FE�	

Is it true that 
 
 � 
 ��

���� The constant of De Bruijn�Newman
Recently� Csordas et� al� �
�� have introduced the so�called De Bruijn�
Newman constant ( as follows� Let the function H��x�� � 
 R� be de�ned
by

H��x� ��

Z �

�

e�t
�

"�t� cos�xt�dt� ��
�

where
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Table �� Exceptions to ����

"�t� �
�X
n��

����n�e	t � 
�n�e�t� exp��n��e�t�	 ����

We mention the following properties of the function "�
i� "�z� is analytic in the strip ���� 
 �z 
 ����
ii� "�t� � "��t�� and "�t� � � �t 
 R��
iii� for any � � �� limt�� "�n�t� exp��� � ��e�t� � �� for each n � �� �� 	 	 	�
The function H� is an entire function of order one� and H��x� is real for real
x� From results of De Bruijn ���� it follows that if the Riemann hypothesis
is true� then H��x� must possess only real zeros for any � 	 �� C�M� Newman
has shown ��� that there exists a real number (� �� 
 ( � �

� � such that
H��x� has only real zeros when � 	 (� and H��x� has some non�real zeros
when � 
 (� This number ( was baptized the De Bruijn�Newman constant in
�
��� The truth of the Riemann hypothesis would imply that ( � �� whereas
Newman ��� conjectures that ( 	 �� In �
�� it was proved that ( � ��� and
in ����� the �rst named author gave strong numerical evidence that ( � ���
For this result� high�precision �oating�point computations with an accuracy of
��� decimal digits were required� A rough estimate showed that a formal proof
of the bound ( � �� would require an extension of that precision to ����
decimal digits� The lower bound �� has been improved further to ��	
�� in
�
�� ��	�� in �
��� ��	
�� ���� in �
�� and to ��	��� ���	 in �
��� Here�
we shall describe how the result of ����� was obtained� and how the result of
�
�� depends on the computations carried out in �����
If we expand the cosine in ��
� in its Taylor series� we obtain

H��x� �

�X
m��

����mbm���x�m
��m��

� ����

where

bm��� �

Z �

�

t�me�t
�

"�t�dt�
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m � �� �� 	 	 	� � 
 R� The n�th degree Jensen polynomial Gn�t��� associated
with H� is de�ned by

Gn�t��� ��

nX
k��

�
n

k

�
k�bk���

��k��
tk� ����

and it was shown in �
�� that if there exists a positive integer m and a real

number )� such that Gm�t� )�� possesses a complex zero� then )� 
 (� The

problem is to �nd m� given )�� In �
�� the bound ( � ��� was derived from the
computation of very accurate approximations of all the zeros of G���t������
of which two zeros were found to be complex� The sensitivity of the zeros of
polynomials to errors in their coe�cients required that the computations were
performed with an accuracy of ��� decimal digits� As a partial check� the
�rst named author repeated the computations of Csordas et al� �
�� with an
accuracy of only �� decimal digits� and the complex zero of G���t����� was
reproduced with about the same accuracy� This illustrates the large amount of
extra work needed to provide a formal proof of the existence of complex zeros
of the Jensen polynomial Gn�t����
In order to improve ( � ���� we noticed that the degree of the Jensen poly�

nomial Gn�t��� which possesses complex zeros� grows quickly with �� Conse�
quently� �nding all the zeros of Gn� n � �� �� 	 	 	 �in order to prove the existence
of complex ones� becomes very expensive� Instead� we used Sturm sequences
����� ����� p� ��
� by which it is possible to �nd the numbers of real and com�
plex zeros of a given polynomial� The principle of the method we used in �����
is as follows� Suppose we know �� and the smallest value n���� of n for which
Gn�t���� has complex zeros �to start with� we took �� � ��� and n � �� from
�
���� Then for a new value of � which is somewhat larger than �� we com�
pute bi���� i � �� �� 	 	 	� and for each new bi we compute the coe�cients of the
associated Jensen polynomial Gi�t���� By means of the associated Sturm se�
quence� we check whether this polynomial has complex zeros with negative real
part� If not� the next bi��� is computed� together with the associated Jensen
polynomial and Sturm sequence� until we have found an i for which Gi�t���
indeed has complex zeros �as said above� if �� 
 � then n���� � n����� Then
we actually compute a complex zero of this polynomial by means of the New�
ton process� the starting value is chosen in the neighborhood of the complex
zero of the previous Jensen polynomial Gn����t���� ����� pp� ��
������ In this
way we found �accurate approximations of� complex zeros of Gn���t��� for
� � ������� ��� �
�� ���� ���� and ��� We found that G����t���� � � for
t � ���	
���������	�
������ i� Our computations did not provide a formal
proof of the existence of this complex zero� because we worked with ����D�
approximations of the coe�cients of the Jensen polynomials� However� a �rst
order error analysis showed that the distance of this complex number to the
exact zero is less than �������
The currently best known lower bound for ( was derived in �
�� by means

of an ingenious other method� which uses extremely close �with respect to


��



the length of the corresponding Gram interval� pairs of complex zeros of the
Riemann zeta function� The closest known pair� found in ����� has normalized
di erence �	���
�� and gives rise to the lower bound ��	�� � ���	� The
one but closest pair� found during the computations reported in ���� but not
published there� has normalized di erence �	������ and induces the lower bound
��	�� ���� ����

���� The Erd�os�Moser equation
The Erd'os�Moser Diophantine equation ���

�k � �k � 	 	 	� �x� ��k � xk ����

has one solution �x� k� � �
� �� for k � �� but for k 	 � no solution is known�
and Erd'os and Moser conjectured that indeed there are no solutions for k 	 ��
From now on we assume that k 	 �� Moser ��� proved that x � ��������� if
a solution exists� The relation between x and k for solutions of ���� has been
studied extensively in ���� �� ���� One consequence is that for every k there is
at most one x satisfying �����
Let Br be the r�th Bernoulli number �B� � �� B� � ����� B� � ���� Bn � �

if n 	 
 and odd�� An odd prime p is said to be regular if p is not a divisor
of Br for all even integers r in the interval ��� p � 
�� Otherwise� p is called
irregular� Moser proved that k is even and that x should be odd� In ��� further
divisibility properties of ���� have been established� Based on these properties
and on numerical searches with the help of an SGI workstation� it was proved
that if �x� k� is a solution of ���� then

�� k must be divisible by the number M � ��
����
����
�������
 � � ��
with log��M � �	
� 	 	 	� and

�� if p is a prime divisor of x� then p must be an irregular prime � ������

This provides strong support for the Erd'os�Moser conjecture� particularly be�
cause these divisibility results can easily be extended if more computer time
would be invested� Here� we shall illustrate the principle of the proof of �� by
showing that k must be divisible by �
�	�� For details of the proof of �� and
for the proof of ��� see ����
In ��� a method is given to �nd pairs �r� q�� with r even� q prime� and

r 
 ��� q � 
�� such that the equation ���� has no solution �x� k� with k 
r mod �q � ��� We shall not describe how these pairs can be found� but Table
�� lists a number of such pairs which we need here�

r � � �� � �� � �� �� �� ��� �� ��� �� ��� ��� 
��
q � � � �� �� � 
� �
 ��� ��� ���

Table ��� Pairs �r� q� for which ���� has no solution with k  r mod �q � ��


�




We start with Moser	s result that k is even� The pair ��� �� from Table �� says
that k � � mod �� so that k  � mod �� Together with ��� ��� and ���� ��� this
implies that k  � mod �� From ��� �� and ��� �� it follows that k  � mod ��
Combining the last two results gives k  � mod ���
Now we prove that k  � mod ��� by eliminating the residues ��� ��� ��� and

� mod ��� using the pairs ��� ���� ��� ���� ���� 
��� and ���� 
�� from Table ���
The pair ��� ��� implies that k � � mod ��� which eliminates the residue ���
and the pair ��� ��� implies that k � � mod ��� which eliminates the residue ��
The pair ���� 
�� implies that k � �� mod 
�� which eliminates the residue ���
and the pair ���� 
�� implies that k � �� mod 
�� which eliminates the residue
��� This proves that if �x� k� is a solution of ����� then k  � mod ����
To derive from this result that k  � mod �������� we have to eliminate the

residues ���� ���� 
��� ���� ���� and ��� mod ���� This follows if we realize
that ���  ��� mod ���� ���  �� mod ��� 
��  �� mod ��� ���  �� mod ���
���  ��� mod ���� and ���  
�� mod ���� and use the pairs ����� �����
���� ��� ���� �
�� ���� �
�� ����� ����� and �
��� ���� from Table ���
In a similar way� we proved that the primes ��� �
� 	 	 	 � � must be divisors

of k if �x� k� is a solution of equation �����

��
� The equation x
 � y
 � z
 � k
Consider the Diophantine equation

x
 � y
 � z
 � k� ����

where k is a �xed positive integer� and x� y� and z can be any integers� It is
easily seen that equation ���� has no solution at all if k  �� mod � There
is no known reason for excluding any other values of k although there are still
many values of k for which no solution has been found so far� Those below ���
�and � �� mod � are ���� ��� 
�� ����

k � 
�� 

� ��� ��� ��� and ��	

For some values of k in�nitely many solutions are known� For example� we
have

�t��
 � ��t� � 
t�
 � ��t
 � ��
 � ��

and
��t
 � ��
 � ���t
 � ��
 � ���t��
 � �	

These relations give a solution of ���� for each t 
 Z� For k � � many other
solutions are known which do not satisfy the above parametric form �e�g��
���� �����
���
In ��
� and ���� solutions of ���� were computed by means of a straightfor�

ward algorithm which for given z and k checks whether any of the possible
combinations of values of x and y in a chosen range satis�es ����� The range
chosen in ���� �which includes the one chosen in ��
�� was�

� � x � y � ����


��



� 
 N � ���� N � z � x�

� 
 jkj � 	

This algorithm requires O�N�� steps� but it �nds solutions of ���� for a range
of values of k� The implied O�constant depends on that range�
Recently� Heath�Brown presented a new algorithm which takes Ok�N logN�

steps� where the implied O�constant depends on k ����� This algorithm is given
explicitly for the case k � 
� but signi�cant changes have to be made for other
values of k� depending mainly on the class number of Q� �

p
k��

For k � 
� Heath�Brown	s algorithm can be described as follows� If k 

 mod  then x  y  z  � mod 
� If x� y and z all have the same sign� then
x � y � z � �� Otherwise� let x and y have the same sign� and z the other�
then we have jx � yj 	 jzj 	 �� Now let n �� x � y and solve the equation
z
  
 mod n with z and n having di erent sign and � � jzj � jnj� In ����
it is derived by factoring in Q� �

p

� �which has class number equal to �� that

gcd�n� 
� � � and that

n � a
 � 
b
 � c
 � abc

for some integers a� b� c such that

z  �
c� � ab��b� � ac��� mod n ���

�with z and n having di erent sign and gcd�b��ac� n� � ��� This gives a unique
value of z� We can then solve the equations x
 � y
 � z
 � 
 and x� y � n to
�nd x and y� This yields

x �
n� d

�
� y �

n� d

�

with d �
p
D and D �

�




�
�

�

� z


n

�
� n�


	

Here� D should be the square of an integer to yield integral x and y� If we
choose a � ��� b � � and c � �� we get n � �� z � ��� D � � and x � y � �
���� �� �� and ��� ����� are the only known solutions for k � 
��
Walter Lioen and the �rst author have implemented Heath�Brown	s algo�

rithm on a Cyber ��� vector computer ���� for k � �� 
� ��� 
�� 
 and ��� In
particular� Lioen was able to vectorize the Euclidean algorithm for the compu�
tation of �b��ac��� mod n in ��� using standard Fortran� Vectorized routines
were written for double precision vector addition� subtraction� multiplication�
division� and modular multiplication� The cases k � 
 and k � 
� probably
are the most intensively studied ones� For k � � the parametric solution given
above was known� but we wanted to check whether other solutions exist� For
k � �� the density of ad*elic points is rather high� and relatively many integer
points are known� This case was used as a �partial� check of the correctness of
our program� The smallest value of k � 
� for which no solution was known


��



is k � 

� However� the fundamental unit of Q� �
p


� is enormous� and in this

case the algorithm becomes very ine�cient� Therefore� we selected the next
two cases k � 
 and k � ��� In ���� precise descriptions are given of the
algorithms for the various chosen values of k� No �new� solutions were found
for k � 
� 
�� and ��� The upperbound on the checked values of jxj� jyj� and
jzj was �	
� � ��� for k � 
� and �	�� � ��� for k � 
�� For k � � the �rst
solution was found which is not of the parametric form given above� namely
�������� 
��������
�������� For k � �� eight new solutions were found �the
largest being ������

��
��������� 
�����
�� and� �nally� for k � 
 we
found the �rst solution ��
����� ���
������
���� so this case could be re�
moved from the list of values of k for which no solution was known� We remark
that this solution was also found� independently� by Conn and Vaserstein

�
��� and by K� Koyama �����

k � 
 denominator D xD yD zD

 ����� ����
 �������
� ����� ������ �������
�� ���������� ��������
 ���
���
�� ������� ��������� ��������

k � 
� denominator D xD yD zD
� 
����� ���

�� ����
��
� �����
� ������� �����


 ������� �
��� �������
� �
������
 ������
 ��������

Table ��� Some rational solutions of ���� for k � 
 and k � 
�

Recently� the �rst named author has implemented Heath�Brown	s algorithm
for k � 
 and k � 
� on a Cray C� vector computer� This� and also the work
in ���� was stimulated by Heath�Brown	s conjecture ��
� p� ��
� that there
are in�nitely many solutions of ���� for each value of k � �� mod � Lioen
again vectorized the Euclidean algorithm and Dik Winter wrote a vectorized
double precision multiplication routine� Peter Montgomery speeded up the
search algorithm by showing that x
 � y
 � z
 � 
 �or 
�� implies that x �
y � z  
 mod � This is seen as follows� If k � 
 or k � 
� in ���� then
x  y  z  � mod 
� Let x � 
a� �� y � 
b� �� and z � 
c� �� then

� � x
 � y
 � z
 � k  ���a
 � b
 � c
 � a� � b� � c�� � �a� b� c� mod ��	

It follows that a�b�c  � mod 
 so that x�y�z � 
�a�b�c��
  
 mod �
We have combined this with the necessary condition x�y�z  k mod �� which
follows from t
  t mod � and ����� With our Cray C��implementation� the
upper bound on the checked values of jxj� jyj� jzjmentioned above was extended


��



for k � 
 to �	� � ��	 and for k � 
� to �	� � ���� Unfortunately� no new
solutions were found�
Peter Montgomery� while visiting CWI in ��� looked for rational solutions

of ���� for k � 
 and k � 
� with the help of the Cray C� vector computer�
He found many such solutions� a small selection of which is given in Table ���
Notice that any rational solution x� y� z of ���� with common denominator D
gives an integer solution xD� yD� zD of ���� with k replaced by kD
�
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